
Contents

Application Note

Document No.: AN1135

G32R501 IPC Application Note

Version: V1.0

Document No.: AN1135

www.geehy.com Page 1

Introduction

This document mainly introduces relevant content of G32R5xx IPC module. The specific

content includes basic introduction to IPC module, register access methods, shared RAM

storage area, and dual-core boot process. The document also provides application examples of

the IPC module, including the implementation methods of dual-core communication and

resource sharing using message mailbox, and the event control use process of the IPC module.

For detailed introduction to the IPC module, please refer to the User Manual of G32R5xx.

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 2

Contents

Introduction ...1

G32R5xx IPC Module Introduction ..3

IPC Module Application Examples ..7

Revision ... 18

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 3

 G32R5xx IPC Module Introduction

 Overview

G32R501 is a dual-core microcontroller chip with isomorphic multi-core asymmetric

architecture, which integrates two Arm® Cortex®-M52 cores internally, with CPU0 as the master

core and CPU1 as the slave core.

In dual-core operating mode, these two cores need to communicate with each other. G32R501

provides an IPC (Inter-Processor Communication) module to enable communication between

dual cores.

The G32R501 IPC module includes three functions:

1. Interrupt control and data sharing (mailbox):

⚫ Data is shared through 4 registers, and 12 interrupts are generated for each CPU.

⚫ Exchange data through the shared memory.

2. Event control

⚫ Communicate between two CPU using polling method and RXEV.

3. WRPRT

⚫ Implement the WRPRT function. The write register protection function can prevent CPU

from performing incorrect write operations on the registers of some peripheral modules.

 Register Access

The IPC module of G32R501 does not exist as an on-chip peripheral module, but is connected

to the coprocessor interface of the Arm core, and the coprocessor number is 1. Therefore,

access to IPC module registers can only be read and written through the coprocessor

instructions provided by the Arm core.

The Arm core provides MCR/MRC or MCRR/MRRC coprocessor instructions for accessing the

IPC module located on the coprocessor interface. The MCR/MRC instruction can only transmit

32-bit data at a time, while the MCRR/MRRC instruction can transmit 64-bit data at a time.

For detailed information on these coprocessor instructions, please refer to the Cortex-M Core

Technical Reference Manual officially provided by Arm.

The formats of MCR and MRC instructions are briefly introduced below. The MCR instruction is

used to write data from the Arm register to the coprocessor register, while the MRC instruction

is used to read data from the coprocessor register to the Arm register.

Formats of MCR and MRC instructions:

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 4

MCR{cond} coproc, <opc1>, <Rt>, <CRn>, <CRm>, <opc2>

MRR{cond} coproc, <opc1>, <Rt>, <CRn>, <CRm>, <opc2>

The meanings of each parameter are as follows:

Table 1 Interpretation to MCR/MRC Coprocessor Instruction Parameters

Command parameter Meaning

cond The condition code for instruction execution, which can be ignored

coproc Coprocessor number. The coprocessor number of the IPC module is 1

opc1 The opcode to be executed by the coprocessor

Rt ARM core register

CRn The target register of the coprocessor

CRm The target register of the coprocessor. If only one is used, set it to c0

opc2 Optional coprocessor specific opcode, set to 0 if not needed

The IPC module driver code in G32R5xx SDK has packaged the relevant coprocessor

instruction operations and provided corresponding interface functions for users to call. Users do

not need to directly use these complex instructions to operate the registers of the IPC module.

 RAM Storage Area Shared by Dual Cores

G32R501 has three types of RAM storage areas, namely, ITCM, DTCM, and SRAM, with a total

of 7 isolated RAM storage areas, as shown in the table below:

Table 2 G32R501 RAM Storage Area Types

RAM storage area type Start address

CPU0_ITCM 0x0000_0000

CPU1_ITCM 0x0000_0000

CPU0_DTCM 0x2000_0000

CPU1_DTCM 0x2000_0000

SRAM1 0x2010_0000

SRAM2 0x2020_0000

SRAM3 0x2030_0000

Although the ITCM and DTCM storage areas of CPU0 and CPU1 have the same address, they

have isolated physical storage space. In addition, CPU0 can only access its own ITCM and

DTCM, and cannot access the ITCM and DTCM of CPU1; similarly, CPU1 can only access its

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 5

own ITCM and DTCM, and cannot access the TCM and DTCM of CPU0.

SRAM1/2/3 is a shared RAM storage area that both CPU0 and CPU1 can access. If a data

block needs to be transferred from one core to the other, using the IPC module combined with

the shared RAM storage area is a good choice.

The typical workflow is as follows:

1. CPU0 writes the data block to the shared storage area.

2. After that, CPU0 triggers the GP interrupt of CPU1 IPC module, and CPU1 will know that

the data block from CPU0 has been ready.

3. CPU1 reads the data block and processes it.

4. After Step 3 is completed, CPU1 triggers the GP interrupt of CPU0 IPC module, and CPU0

will know that CPU1 has processed the data block, and then CPU0 can continue to transfer

new data blocks to CPU0.

 Dual-core Boot Process

G32R501 first starts from the master core CPU0 and then executes BOOTROM. After CPU0 is

started, the boot address of CPU1 is configured by writing to the BOOT_ADDR1 register, and

the clock of CPU1 is enabled by writing to the BOOTCTRL register. In this way, the slave core

CPU1 can start executing programs from the address configured in the BOOT_ADDR1 register.

The flowchart of the dual-core boot process is as follows:

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 6

Figure 1 Dual-core Boot Flowchart

Start

Power-on reset/WDRSn reset/XRSn reset

Has BOOTROM been executed?

CPU0 executes BOOTROM

CPUO jumps to the user code

execution program according to the

configured BootMode value

Is the value o f BOOT_CTRL

register set to 0x03?

CPU1 core is started. Start executing

the program at the address

corresponding to the configuration

value of BOOT_ADDR1 reg ister

End

Y

Y

N

N

The basic steps for booting the slave core CPU1 are:

1. Compile the image file of the slave core into the image file of the master core, and then

download the obtained image file of the master core to G32R501.

2. The master core executes the program, configures the boot address of the slave core, and

enables the clock of the slave core to boot the slave core.

3. The slave core CPU1 starts executing the program.

In G32R501, the master core and slave core share the same Flash storage space, so when

compiling the image file from the slave core to the master core, it is necessary to consider the

allocation of Flash space occupied by these two cores. The dual-core routine provided in the

G32R5xx SDK evenly divides the size of Flash to the two CPU cores for use. If users want to

modify the size of Flash space occupied by the master core and slave core, they can do so by

modifying the .sct link file of the dual-core startup routine.

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 7

 IPC Module Application Examples

The IPC module can implement such functions as message passing, resource sharing, and

event control between dual cores. In the G32R5xx SDK, the application example code of these

features has been provided, and users can refer to the example code in the SDK. The example

code of these functions is introduced in detail as follows.

For the dual-core routines, the master core (CPU0) and slave core (CPU1) have their own

engineering project. When running these examples, it is necessary to first compile the

engineering of CPU1 to obtain the image file of CPU1, and then compile the image file into the

engineering of CPU0.

 Message Mailboxes

The G32R501 IPC module has four 32-bit word transmit and receive data registers, and users

can use these registers to transmit 32-bit word data or write message frame information (e.g.

initial address, data length, and message type code) in the shared memory.

Transmitting and receiving data can be done by polling the flag bit or by interrupts. The

G32R5xx SDK provides examples programs of these two methods for users’ reference to

transmit and receive data.

3.1.1 Transmitting and receiving data by polling

The driverlib\g32r501\examples\eval\ipc\ipc_ex2_mailbox_polling routine provided in the SDK

demonstrates how to implement communication between dual cores by polling. The process of

transmitting and receiving data by polling is as follows:

Figure 2 Flowchart of Transmitting and Receiving Data in Dual-core Communication by Polling

Start

CPU0 transmit data reg ister

empty flag bit = 1?

CPU0 writes data to the transmit data

register

CPU1 receive data register

 full flag bit = 1?

End

CPU1 reads the receive data register to

obtain data

Y

Y

N

N

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 8

In this example, CPU0 first transmits data to CPU1, and then CPU1 waits to receive the data

transmitted by CPU0 through polling.

Code snippet of data transmitted by cpu0 by polling:

Code snippet of data received by cpu1 by polling:

//

// CPU0 send message to CPU1

//

while (IPC_isTxBufferEmpty(IPC_TX_0) != true);

IPC_transmit32Bits(IPC_TX_0, g_msgSend[0]);

while (IPC_isTxBufferEmpty(IPC_TX_1) != true);

IPC_transmit32Bits(IPC_TX_1, g_msgSend[1]);

while (IPC_isTxBufferEmpty(IPC_TX_2) != true);

IPC_transmit32Bits(IPC_TX_2, g_msgSend[2]);

while (IPC_isTxBufferEmpty(IPC_TX_3) != true);

IPC_transmit32Bits(IPC_TX_3, g_msgSend[3]);

//

// CPU1 receive message from CPU0

//

while (IPC_isRxBufferFull(IPC_RX_0) != true);

g_msgRecv[0] = IPC_receive32Bits(IPC_RX_0);

while (IPC_isRxBufferFull(IPC_RX_1) != true);

g_msgRecv[1] = IPC_receive32Bits(IPC_RX_1);

while (IPC_isRxBufferFull(IPC_RX_2) != true);

g_msgRecv[2] = IPC_receive32Bits(IPC_RX_2);

while (IPC_isRxBufferFull(IPC_RX_3) != true);

g_msgRecv[3] = IPC_receive32Bits(IPC_RX_3);

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 9

For dual-core routines, this example code can run according to the following steps:

1. Compile the engineering of the slave core (CPU1) to generate the binary image file.

2. Compile the engineering of the master core (CPU0) using the binary image file of the

CPU1.

3. Download the obtained master core image file to the G32R501 development board.

4. Open the serial port terminal tool according to the configuration of 115200 baud rate + 8

data bits + no parity check + one stop bit + no flow control.

5. Press the reset button on the development board and observe the print information on the

serial port terminal.

Figure 3 Output Results of An Example of Transmitting and Receiving Data by Polling on Serial

Port Terminal

3.1.2 Transmitting and receiving data by interrupt

In dual-core communication, transmitting and receiving data can also be implemented by

interrupt. The process of transmitting and receiving data by interrupt is as follows:

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 10

Figure 4 Flowchart of Transmitting and Receiving Data in Dual-core Communication by Interrupt

Start

CPU0 transmitting empty in terrupt is

triggered

End

CPU0 writes data to the transmit data

register in the transmitting interrupt

handling function

CPU1 receiving full interrupt is

triggered

CPU1 reads the received data in the

receiving interrupt handling function

The driverlib\g32r501\examples\eval\ipc\ipc_ex1_mailbox_interrupt routine provided in the SDK

demonstrates how to implement communication between dual cores by interrupt.

When the transmission of CPU0 is triggered as an empty interrupt, CPU0 will transmit data to

CPU1 in transmitting interrupt handler, and the code is as follows:

//

// IPC TE0 Interrupt ISR

//

void INT_IPC_TE0_IRQHandler(void)

{

 if (IPC_isTxBufferEmpty(IPC_TX_0) == true)

 {

 IPC_transmit32Bits(IPC_TX_0, g_msgSend[g_curSend++]);

 IPC_disableInterrupt(IPC_INT_TE0);

 }

}

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 11

When the receiving of CPU1 is triggered as a full interrupt, CPU1 will receive data from CPU0

in receiving interrupt handler, and the code is as follows:

The running result of this example is as follows:

Figure 5 Output Results of An Example of Transmitting and Receiving Data by Interrupt on

Serial Port Terminal

 Resource Sharing

On G32R501, both the peripheral modules and shared SRAM1/2/3 storage areas can be

accessed by both the master and slave cores. Therefore, when designing the dual-core

routines, special attention shall be paid to it to avoid resource competition. If it is necessary for

dual cores to share the same peripheral or access the same RAM storage area, the GP

(general-purpose) interrupt in the IPC module can be used to achieve mutual exclusion access.

When GP interrupt is used to achieve mutual exclusion access to resources, the flowchart on

the CPU0 side of the master core is shown below:

//

// IPC RF0 Interrupt ISR

//

void INT_IPC_RF0_IRQHandler(void)

{

 if (IPC_isRxBufferFull(IPC_RX_0) == 1)

 {

 g_msgRecv[g_curRecv++] = IPC_receive32Bits(IPC_RX_0);

 }

}

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 12

Figure 6 Flowchart of CPU0 Using GP Interrupt to Achieve Mutual Exclusion Access

Start

CPU0 waits for CPU1 to

trigger GP interrupt

CPU0GP interrupt handling function

modifies the mutual exclusion access

variable to 1

End

CPU0 triggers CPU1GP interrupt

Release the access permission for shared

resources

Y

N

CPU0 obta ins the access to shared

resources

Update shared variables and print output

Modify the mutua l exclusion access

variable to 0

The mutual exclusion access process of resources on the CPU1 side is the same as that on the

CPU0 side.

The driverlib\g32r501\examples\eval\ipc\ipc_ex4_resource_share routine provided in the

G32R5xx SDK demonstrates how to use the GP interrupt of the IPC module to achieve mutual

exclusion access to resources when dual cores use UART serial peripherals and update shared

variables simultaneously.

In the CPU0 GP interrupt handler, assign the variable g_cpu0Mutex used for mutual exclusion

access to 1.

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 13

CPU0 GP interrupt handling code:

Then, the two cores will continuously monitor and control the mutual exclusion access variable

in their respective main loop code. Only when the variable is modified to 1, can they use UART

peripherals and update the shared variables. The main loop code of the two cores is as follows.

//

// IPC GP0 Interrupt ISR

//

void INT_IPC_GP0_IRQHandler(void)

{

 if (IPC_getPendingStatus() == IPC_GPFLAG_0)

 {

 IPC_clearPendingStatus(IPC_GPFLAG_0);

 g_cpu0Mutex = 1;

 }

}

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 14

Main loop process of master core (CPU0):

//

// Loop.

//

for(;;)

{

 //

 // Wait until CPU0 can access the shared resource

 //

 while (g_cpu0Mutex != 1);

 //

 // CPU0 can change shared variable g_shared

 //

 g_shared++;

 printf("CPU0 update shared variable to: %d\r\n", g_shared);

 g_cpu0Mutex = 0;

 //

 // CPU0 requests to trigger CPU1's GP interrupt, to notify CPU1

 // that it can access shared resources.

 //

 IPC_request(IPC_GPFLAG_0);

}

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 15

Main loop process of slave core (CPU1):

//

// Loop.

//

for(;;)

{

 //

 // Wait until CPU1 can access the shared resource

 //

 while (g_cpu1Mutex != 1);

 //

 // CPU1 can change shared variable g_shared

 //

 if (g_shared != NULL)

 {

 (*g_shared)++;

 printf("CPU1 update shared variable to: %d\r\n", *g_shared);

 }

 g_cpu1Mutex = 0;

 //

 // CPU1 requests to trigger CPU0's GP interrupt, to notify CPU0

 // that it can access shared resources.

 //

 IPC_request(IPC_GPFLAG_0);

}

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 16

The running result of this example is as follows:

Figure 7 Output Results of An Example of Mutual Exclusion Access of Resources on Serial Port

Terminal

 Event Control

The IPC module can implement the event control mechanism through TASK and STATE

registers. The working principle of this mechanism is:

⚫ CPU0 writes data to the TASK register, and this operation will generate a wake-up signal to

notify CPU1;

⚫ CPU1 can read data from the TASK register and execute corresponding task codes

according to the value of the register.

⚫ CPU0 can learn the execution status of CPU1 by reading the value of the STATE register.

The event control process is as follows:

1. CPU0 writes data to the TASK1_REG register by calling the IPC_issueTask function, so that

CPU1 can execute corresponding tasks based on different data (task ID). Besides, this

operation can wake up CPU1 in sleep mode.

2. After CPU1 is awakened, it obtains the value of the TASK1_REG register through the

IPC_fetchTas function, and this operation will cause the hardware to clear the value of the

TASK1_REG register.

3. CPU0 can obtain the value of the STATE1_REG register through the IPC_getTaskState

function to learn the execution status of CPU1.

4. After CPU1 completes the corresponding task, it writes the value of the STATE1_REG

register to 0 through the IPC_updateTaskState function to clear its content of this register.

5. CPU1 obtains the value of the TASK1_REG register again through the IPC_fetchTask

function. If the value of the register is not zero, CPU1 will repeat the above steps;

otherwise, CPU1 will enter sleep mode.

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 17

Figure 8 Event Control Flowchart of IPC Module

Start

CPU0 writes TASK1_REG register

CPU1 enters sleep mode

CPU1 is awakened and reads the

TASK1_REG register value

CPU1 executes corresponding task

based on the TASK1_REG register

value

CPU0 determines

whether CPU1 has

completed the task

by the STATE1_REG

register

CPU1 clears the STATE1_REG register

CPU1 reads the TASK1_REG

register value and determines if it is 0

Y

YN

N

The driverlib\g32r501\examples\eval\ipc\ipc_ex5_event_control routine provided in G32R5xx

SDK demonstrates how to use the event control mechanism of the IPC module for CPU1 to

execute different tasks.

The running result of this example is as follows:

Figure 9 Output Results of IPC Event Control Routine on Serial Port Terminal

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 18

 Revision

Table 3 Document Revision History

Date Version Change History

January, 2025 1.0 New

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 19

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter

referred to as “Geehy”). The contents in this document are protected by laws and regulations of

trademark, copyright and software copyright. Geehy reserves the right to make corrections and

modifications to this document at any time. Read this document carefully before using Geehy

products. Once you use the Geehy product, it means that you (hereinafter referred to as the

“users”) have known and accepted all the contents of this document. Users shall use the Geehy

product in accordance with relevant laws and regulations and the requirements of this

document.

1. Ownership

This document can only be used in connection with the corresponding chip products or

software products provided by Geehy. Without the prior permission of Geehy, no unit or

individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

document for any reason or in any form.

The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks

of Geehy. Other product or service names displayed on Geehy products are the property of

their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document,

it shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products,

services or intellectual property. Any information regarding the application of the product, Geehy

hereby disclaims any and all warranties and liabilities of any kind, including without limitation

warranties of non-infringement of intellectual property rights of any third party, unless otherwise

agreed in sales order or sales contract.

3. Version Update

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 20

Users can obtain the latest document of the corresponding models when ordering Geehy

products.

If the contents in this document are inconsistent with Geehy products, the agreement in the

sales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or

cooperative third-party testing organization. However, clerical errors in correction or errors

caused by differences in testing environment may occur inevitably. Therefore, users should

understand that Geehy does not bear any responsibility for such errors that may occur in this

document. The relevant data in this document are only used to guide users as performance

parameter reference and do not constitute Geehy’s guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and

effectively verify and test the applicability of Geehy products to confirm that Geehy products

meet their own needs, corresponding standards, safety or other reliability requirements. If

losses are caused to users due to user’s failure to fully verify and test Geehy products, Geehy

will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN

USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL

UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-

EXPORT OR OTHER LAWS OF THE COUNTRIES OF THE PRODUCTS SUPPLIERS,

GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF,

SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE

BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF

GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO

THE EXTENT PERMITTED BY APPLICABLE LAW.

http://www.geehy.com/

Document No.: AN1135

www.geehy.com Page 21

GEEHY'S PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED FOR

USE AS CRITICAL COMPONENTS IN MILITARY, LIFE-SUPPORT, POLLUTION CONTROL,

OR HAZARDOUS SUBSTANCES MANAGEMENT SYSTEMS, NOR WHERE FAILURE

COULD RESULT IN INJURY, DEATH, PROPERTY OR ENVIRONMENTAL DAMAGE.

IF THE PRODUCT IS NOT LABELED AS "AUTOMOTIVE GRADE," IT SHOULD NOT BE

CONSIDERED SUITABLE FOR AUTOMOTIVE APPLICATIONS. GEEHY ASSUMES NO

LIABILITY FOR THE USE BEYOND ITS SPECIFICATIONS OR GUIDELINES.

THE USER SHOULD ENSURE THAT THE APPLICATION OF THE PRODUCTS

COMPLIES WITH ALL RELEVANT STANDARDS, INCLUDING BUT NOT LIMITED TO

SAFETY, INFORMATION SECURITY, AND ENVIRONMENTAL REQUIREMENTS. THE USER

ASSUMES FULL RESPONSIBILITY FOR THE SELECTION AND USE OF GEEHY

PRODUCTS. GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING

FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDES THE DOCUMENT AND

PRODUCTS "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE DOCUMENT AND PRODUCTS (INCLUDING BUT NOT LIMITED TO

LOSSES OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY USERS OR THIRD PARTIES). THIS COVERS POTENTIAL DAMAGES TO PERSONAL

SAFETY, PROPERTY, OR THE ENVIRONMENT, FOR WHICH GEEHY WILL NOT BE

RESPONSIBLE.

8. Scope of Application

The information in this document replaces the information provided in all previous versions

of the document.

© 2025 Geehy Semiconductor Co., Ltd. - All Rights Reserved

http://www.geehy.com/

	1 Introduction
	2 G32R5xx IPC Module Introduction
	2.1 Overview
	2.2 Register Access
	2.3 RAM Storage Area Shared by Dual Cores
	2.4 Dual-core Boot Process

	3 IPC Module Application Examples
	3.1 Message Mailboxes
	3.1.1 Transmitting and receiving data by polling
	3.1.2 Transmitting and receiving data by interrupt

	3.2 Resource Sharing
	3.3 Event Control

	4 Revision

